Reco Workshop, Detector Effect Study

10/2/14
Ariana Hackenburg/ Kazu/ Shower
Reco Group

Selecting Showers/ Distinguising e/γ

3 things we can study:

Fiducial Volume

Shower Length

Distance between Start Point and Vertex

Selecting Showers/ Distinguising e/γ

3 things we can study:

Fiducial Volume

Shower Length

Distance between Start Point and Vertex

Previously

Ryan's study, <u>DocDB 3687</u> involved fiducial cut, and shower distance from edge of detector

Shower Containment

Estimate shower containment.

 $\chi_{\gamma,Z}$

Truth position

Fiducial Cut from TPC edge

P = Distance from γ conversion to closest projected edge of

Detector Effect

Detector Effect

True direction

Efficiency

Efficiency is defined as:

#showers that pass a cut / #total showers

For example, the number of contained showers decreases as we increase a cut on fiducial volume; efficiency decreases.

Energy Containment

Energy containment is defined as:

daughter energy / mother energy

Mother energy is energy of particle produced at the vertex.

Daughter energy is energy of the shower (after conversion)deposited in the detector.

Energy Containment

(legend refers to no cut, and 3,4,5 rad lengths cut from vertex)

_Econ0

PiO Mass Peak

5Rad Len 3Rad Len 0Rad Len

Efficiency, EnergyContainment and Convolution vs Fiducial Cut

Single Showers

EC
Efficiency
Convolved

Efficiency, EnergyContainment and Convolution vs Length Cut

Single Showers

EC Efficiency Convolved

Both for comparison, slightly different scale

Length Cut

Energy Containment*Eff vs. Fid. vs. Length

